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Abstract

Autonomous machines currently lack a complete understanding of their surround-
ings, missions, and the unexpected events that may affect their performance. It
is evident that robots require a deeper level of understanding to take actions that
make sense. The low levels of awareness in robots are a significant barrier in var-
ious robotic application domains. Machines lack the same level of understanding
as their engineers and the people around them, which limits their performance,
dependability, and trustworthiness. There is a need for a more profound core
architecture that enables robots to comprehend their world and mission bet-
ter. Deep learning alone is not enough to solve this problem. The ability to
create explanations about a robot’s own experiences, especially the capacity to
causally explain unexpected events, is crucial in building socially aware robots.
Our paper outlines the key proposition of the INSIGHT project, which is to
equip robots with the ability to navigate their surroundings, comprehend them
by verifying the coherence of their internal models, and develop new causal expla-
nations in response to detected inconsistencies. The cognitive architecture used
in the project will be expanded by integrating new memories (both semantic
and episodic) and internal processes that control the flow of information between
them. The new key element added is an internal simulator, which the robot will
use to test alternative hypotheses until an effect is causally linked to its potential
causes. Once established, the cause will be internalized as new knowledge, which
will be used to accomplish future missions. A key output of this process will be
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a set of human-understandable explanations that will enable the robot to engage
in a clarifying dialogue with its human supervisor.

Keywords: robotics, causal inference, cognitive, reasoning

1 Introduction

In the scope of mobile robotics, a profound need exists for them to possess a compre-
hensive understanding of their open environments. This understanding goes beyond
mere identification of interactions with surrounding objects, such as recognising charg-
ing opportunities when encountering a battery station or utilising environmental data
for traditional location and navigation tasks [1]. In today’s landscape, the challenges
are increasingly ambitious, striving to equip robots with the capacity to articulate
their own experiences. Similar to humans, robots may encounter anomalies or unfore-
seen situations during their journeys that defy explanation based on prior knowledge.
The capability to apprehend and elucidate these anomalies by establishing causal
relationships among surrounding objects offers robots a priceless source of data for
enhancing their behaviour and, consequently, refining future experiences [2]. This
method of knowledge discovery can be denoted as the ’coordination of claims and evi-
dence [3]’ and assumes some pre-existing awareness of surrounding objects, typically
achieved through the use of models and ontologies. This paper presents the INSIGHT
project, a collaborative effort across three different universities aimed at advancing the
development of self-understandable and self-extendable robots. Our principal objec-
tive within the INSIGHT project is to analyse unexpected experiences to construct
new knowledge, including explanation capabilities.

Causal reasoning is one of the cornerstones of INSIGHT, even though it remains
relatively underexplored in robotics [4]. Causality [5] will be investigated to generate
and compare new hypotheses that could account for anomalous experiences. Further-
more, causal relations serve as a valuable tool for providing additional explanations,
allowing newly discovered knowledge to be expounded through natural human-robot
interaction processes.

The INSIGHT project draws upon the expertise of three research groups in the
fields of robotics and artificial intelligence. Furthermore, it will also leverage certain
pre-existing components that will streamline the developmental phases. These com-
ponents include a mobile robot with a cognitive architecture featuring a working
memory (referred to as DSR: Deep State Representation). This memory comprises a
multi-labelled directed graph containing both symbolic and geometrical information.
In addition to the physical robot, there is an embedded physics simulator (EPS) capa-
ble of integrating data from both the real world and simulations. The simulator’s role
will be pivotal in evaluating causal hypotheses through scenario assessments.

The design and development stages involved in the research project are situated
within a use case, which is employed to illustrate the challenge faced when a robot
encounters unexpected experiences based on its prior knowledge. In these scenarios,
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the robot may be incapable of providing a valid rationale for the events that tran-
spired, necessitating an adaptation of its knowledge and, consequently, the acquisition
of new insights from the experience. This learning process is facilitated through a
self-understanding procedure, as detailed in Section 4, which endeavours to identify
causal explanations for unexpected events. Within this process, the semantic memory
is examined to propose and validate new causal relationships between objects, with
the assistance of the internal simulator, that can account for the preceding experience.
These newly established relationships should also be suitable for presenting a coherent
explanation to a human through a phase of natural human-robot interaction.

2 Related work

In recent years, the incorporation of causal reasoning in robotics, a relatively underex-
plored area, has been increasingly noted as pivotal in fostering the development of truly
smart robots [4]. Current research efforts are leaning towards equipping robots with
the ability to establish causal rules through various methods such as imitation learn-
ing, where robots discern the rules of intuitive physics by observing actions and their
subsequent effects [6], or learning from demonstrations to enhance spatial, temporal,
and causal knowledge for task execution [7, 8].

A critical area of focus in the current landscape lies in the integration of deep
learning techniques into robotic systems to promote enhanced awareness and response
mechanisms. Research conducted by LeCun, Bengio, and Hinton in [9] underscores
deep learning as a potent tool for enabling machines to learn from a substantial volume
of data. However, it also underscores the necessity of complementing it with other
methodologies to attain a higher level of comprehension and interaction. In [10], the
authors advocate a shift in paradigm that places common sense at the core of the
discourse. They identify functionality, physics, intent, causality, and utility (FPICU)
as the five fundamental domains of cognitive AI imbued with humanlike common sense.
From this vantage point, addressing the ’how’ and ’why’ becomes the more pressing
inquiry, necessitating reasoning about unobservable factors beyond visible pixels.

Moreover, the concept of robots possessing the capability to generate explanations
comprehensible to humans has garnered scholarly interest. This concept is in harmony
with the objectives pursued within the INSIGHT project. Research by Hayes and
Shah [11] in the realm of human-robot interaction has illuminated the significance
of robots being adept at participating in elucidatory dialogues with humans. This
proficiency requires a degree of causal reasoning to elucidate their experiences and
actions effectively.

One significant advancement in this field is the development of an inner sim-
ulator that facilitates the identification and exploration of potential causes behind
specific effects. This simulator aids in evaluating error situations, permitting a robot
to discern possible reasons behind an unsuccessful action and adjust its approach
accordingly, thus stepping beyond the limitations noted by Wyatt et al., where robots
were restricted to predefined notions of possible causes [12]. In a broader scope, the
idea of embedding an internal simulator as a core element of the cognitive architec-
ture is gaining momentum. From the findings of mirror neurons [13] to research in
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consciousness [14, 15] and cognitive science [16], the playground has been prepared for
cognitive robots. Internal simulation is being explored from different angles, whether
using hyperrealistic simulators [17], probabilistic models that can be inverted to yield
explanations [18], or as tools to reason under occlusion [19].

The INSIGHT project introduces a novel approach in this domain, distinguishing
itself from other similar initiatives like the one presented by Brawer et al. [20]. Unlike
the latter which relies on physical exploration, INSIGHT utilizes a combination of
observation and inner simulation, enabling robots to probe various potential causes
by manipulating influencing factors within simulated environments. Furthermore, this
approach potentially enhances data efficiency and facilitates the generation of self-
conducted experiments, transcending the observational learning constraints delineated
in works by Han et al., where causal variables were mandated to be observable [21].

The progressive trend in robotics research is steering towards the integration of
causal reasoning and learning, fostering a generation of robots capable of intelligent,
autonomous decision-making through simulation and analysis of a broad spectrum
of potential causal factors. This approach, pioneered by initiatives like INSIGHT,
promises to revolutionize the robotics domain by engendering robots that are not only
receptive to causal influences but also capable of innovatively responding to them.

3 The core experiment: What tipped over the
medicine bottle?

The core of the INSIGHT project focuses on one detailed experiment that should be
carried out and that conveys all the theoretical problems and hypotheses raised in
the project. The experiment has been designed to keep the essential elements of the
problem while simplifying the context in which the robot evolves. The scenario consists
of a robot named Shadow (see Fig. 1)that follows its human supervisor, Ana, on a drug
delivery mission at a healthcare facility. Before starting, Ana leaves a medicine box
on the robot’s tray, making it aware of it. As she proceeds towards her destination,
Shadow encounters an unforeseen obstacle, causing the medicine to spill and scatter
on the ground. Despite the robot’s IMU sensing the disruption, it remains unaware
of the missing medicine until it scans the area with its head camera, in accordance
with its pre-programmed mission, a few moments later. The robot halts its movements
and contacts Ana, recognizing that the medicine is a crucial prerequisite for the plan
to proceed. Ana promptly responds to the notification, realizing the absence of the
medicine, and initiates a conversation with Shadow.

ana: What happened?
shadow: I hit a bump, and the medicine fell to the ground.
ana: Where is it now?
shadow: It should be 2 metres behind, on the floor.
ana: Do you think the medicine might be broken?
shadow: No, I don’t think so.
ana: OK, let me pick it up and put it back on the tray (The medicine is put

back on the tray. The robot looks at it and updates its state).
shadow: Let’s keep going! We are running late.
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Fig. 1: The robot Shadow

In this conversation, Shadow successfully communicates the circumstances to Ana
and explains that a bump was the cause of the accident. To meet the deadline, it is
necessary to complete most of the explanation in the second line before Ana asks any
questions. As a necessary effect of building this explanation, the new BUMP concept
will be grounded by synthesizing a BUMP detector and making it available to the
control system. Also, the future behaviour of Shadow will take into account this new
functionality to detect, anticipate and avoid potential bumps on its way. Before we
proceed with the use case, it is important to establish a set of conditions that must
be met prior to searching for an explanation.

a) Shadow is running an instance of the CORTEX architecture (see Figure 2) that
includes several memories, including working, semantic and episodic memories, and
other modules that connect them [22][23].

b) The robot’s sensors include a camera, an IMU, and a microphone.
c) The robot’s IMU senses the inclination of the robot but, as it is not categorised as

a known event, it is quietly recorded in episodic memory and ignored. The same
situation applies to the camera.

d) One of these elements is an embedded Physics simulator, bottom-right in Figure
2, that can run synchronised with the robot’s activity. The speed of the robot and
the objects detected by the perception system are fed into the simulator to update
its state.

e) The simulator is initialised with a nominal plan, namely Follow[Ana], and with
the environment’s elements perceived by the robot: the person, the floor, and the
structural elements around it.
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Fig. 2: The CORTEX cognitive architecture

f) The output of the simulated robot’s sensors is injected back into the working
memory in real time as dual, synthetic versions of the robot’s real sensors. These
“efferent” copies can be used to detect mismatches between the state predicted by
the model inside the simulator, and the state read by the sensors.

g) After the initial interaction with the human, the robot starts a mission that consists
of following Ana while checking that the medicine remains safely on the tray.

4 Outline of a solution

Below we present a sequence of steps that, according to the project’s hypothesis, would
lead to the construction of a causal explanation and the grounding of the BUMPER
concept. These internal actions on the architecture are a form of learning that changes
it structurally and functionally.

1. As the robot moves forward, its camera registers the bump on the floor, but it is
silently ignored since there is no detector for it. The presence of a bump is not
transmitted to the simulator.

2. When the robot hits the bump, a difference is measured between the real data
read from the IMU and the synthetic data generated within the simulator. The
sensorial anomaly (event) is registered but without further consequences. Nothing
is triggered by such an event.

3. Because of the bump, the box tips over and falls on the floor. The robot notices
that the medicine is missing and proceeds to stop the mission, halting and calling
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the human. A new sensorial event is registered, i.e., the absence of the box, but
this time it triggers an action since its presence was mandatory in the mission.

4. The self-understanding process starts here. It is inside the robot’s control architec-
ture to trigger the search for a causal explanation whenever an unexpected event,
such as FALLEN BOX, occurs.

5. The embedded simulator is taken out of sync with the external world. Then, it is
restarted but this time as a contrastive hypothesis evaluator. The goal now is to
search for the simplest scenario that generates a set of synthetic perceptive data
approximating the timing and readings from the real sensors. In doing so, different
runs will have to be performed, each one with a different initial situation. The
loop will continue until a valid scenario is found that reproduces both the IMU
perturbation and the box-dropping event, at approximate times.

6. To achieve this, the episodic memory is queried to retrieve the initial scenario
occurring just before the beginning of the FALLEN BOX event. This scenario will
be extended with different new elements, extracted from the semantic memory, that
could be a plausible cause of the experienced events.

7. The semantic memory is queried at this point for cause-effect statements containing
the target known effect: FALLEN BOX. Any other contextual symbols that might
have been elicited by the robot’s perceptual system, such as TILTED(robot), or
MOVING(robot) will be added to the query. In the following, we try to maintain
the generality of the case but assume a minimum set of conditions:

(a) There is a symbol BUMP in the semantic memory’s knowledge base. This is
easy to assume since external sources of generic knowledge, i.e. public robotics
ontologies knowledge graphs or large language models, can be accessed online.

(b) There are also rules linking BUMP with the effects it causes on moving things,
i.e. tilt, lean over, bouncing, roll over, etc. such as BUMP ∧MOV ING(x) =⇒
TILT (x)
We now show a possible answer set after an informed search over the space of

causal relations is completed:

(a) MOV ING(x) ∧BUMP =⇒ TILT (x) (base knowledge)
(b) MOV ING(x)∧BROKEN WHEEL(x)∧CARRY ING(x, y) =⇒ TILT (x)∧

FALLING(y) (promising)
(c) MOV ING(x) ∧BUMP ∧ CARRY ING(x, y) =⇒ TILT (x) ∧ FALLING(y)

(optimal)
(d) BURGLAR(h) ∧ MOV ING(x) ∧ CARRY ING(x, y) ∧ V ALUABLE(y) =⇒

STEALING(h, y) ∧MISSING(y) (too elaborated)

The tags at the end of the rules are only to show different types of possible
candidates obtained from the available sources. No previous evaluations of their
suitability are supposed.

8. The next step is to transform each accepted entry from the answer set into an initial
scenario for the simulator. All initial scenarios are derived from the same situation
recovered from the episodic memory and then extended with some additional vari-
ations derived from the rule being tested. The extension of the scenario is a crucial
part that involves addressing the grounding problem since we need to transform a
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group of ungrounded, externally obtained symbols, i.e. BUMP, into functional ele-
ments of the simulation. In the case of the concept BUMP, we will assume that one
of its defining properties is a 3D mesh representing a prototypical protrusion. The
simulator’s initial scenario is a textual description of the elements in the scene and
their kinematics properties. To extend it with the bump, we need to add a new
object defined by the mesh file and its position and size in the scene. This gives us
three free parameters, the 2D position and the size, that have to be evaluated along
a reasonable range of values. The complete process has thus to iterate over two
loops, the list of candidate hypotheses and their free parameters, until a scenario is
found whose synthetic sensorial experiences match the real experience. The specific
scenario that best matches the IMU and medicine tilting event, in time and in the
shape of the response, will be selected as the optimal one and will be considered
the causal explanation of the event.

9. The end of the search triggers for crucial new processes:

(a) First, the selected rule that links the bump with the tilting and falling of the
medicine is marked in semantic memory as a grounded rule, meaning that it has
passed a contrastive hypothesis procedure triggered by a perceptual anomaly.

(b) This is followed by the construction of the human-understandable explanation
demanded by Ana, and that will be verbalised in the ongoing dialogue with her.

(c) The additional details requested by Ana involve the location of the fallen box
and the possibility of it being broken. This is a reasoning process that needs
to access the results of the simulation. The distance to the medicine can be
obtained from the final spatial coordinates of the bump. The integrity of the
medicine could also be similarly obtained if it had the capability to simulate
the breaking of falling crystal bottles. If not, a pre-existent formula or a table
relating falling height and bottle material characteristics with its breaking point
would be necessary. This data could be obtained from an external oracle, such
as a large language model (LLM).

(d) To advance in the grounding process of the BUMP concept, the robot should
be able to recognize a bump if it hits it, but also in advance of this hit. The
first situation would involve a classifier on the IMU data, and the second on
the image and/or lidar data. In doing so, it could avoid future accidents and by
knowing now why it did that, it would be able to explain it to the humans. But
building a classifier on the fly is not an easy task, even a simple one. A possible
approach would be to collect data from the two classes, bump/no-bump, in both
modalities and train a neural network as a binary classifier. The problem is that
there is only one example of the bump class recorded in the episodic memory.
The only alternative is to synthesize more examples with the internal simulator.
Since we do have a virtual bump, it is a matter of running variations of the robot
going over it, changing its size and the robot’s speed. Note that this is a third
different use of the same simulator in the CORTEX architecture. Assuming that
we have the code to operate the simulator as a data collector, the rest of the
process implies the selection of a neural network architecture and the training
until convergence. Once cross-validated, the model can be used to generate a
new component that would be added to the architecture. Once installed, these
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components, IMU and RGB, will detect and instantiate the BUMP concept
every time it is experienced by the sensors.

(e) A final change in the existing architecture should define how the behaviour of
the robot changes upon the perception of a new bump. How can the robot
activate, modify or create an avoiding behaviour that was not there before and
that avoids a bump on the floor? The concept BUMP will not be fully grounded
until it is causally connected with the robot and its environment. If the robot
already knows how to avoid obstacles, creating for instance a coastal map used
by MPC controller, a simple solution would be to add the bump to the list of
image regions that count as obstacles for the grid. To do this autonomously
implies that the list is not hard coded and that the integration of the new rule
implies this action, by interpreting that the box falling to the floor is something
that must be avoided.

5 Reconstruction of a virtual experiment

Assuming that all the steps presented in Section 4 were correctly performed, we can
run a virtual experiment in which the robot meets a new bump during a fresh mission.
To build this experiment, we only need to focus on the working memory that occupies
the central part of Figure 2, where the robot and objects close to it are represented, and
on the semantic memory. Agents, in brown, connect memories, pumping information
among them.

Starting from a similar initial situation with the robot Shadow following Ana on
a new delivery mission, the robot’s extended perception system visually detects the
bump ahead before running over it. The corresponding region of space is added to the
coastal map as an obstacle and the navigation algorithm executes a detour to avoid
it. As a consequence of the triggering of the new BUMP detector, a corresponding
concept node is injected into the working memory, with an arc connecting it to the
node representing the floor (or the room, hallway, etc.). According to CORTEX’s
dynamics, the semantic memory will immediately detect the new node and will retrieve
some potentially relevant rules that include the concept BUMP. Assuming that the
one just learnt is found, it will be injected into the working memory edges labelled
TILT and FALLING, connecting it with the node representing the medicine box. This
new information internally added from the semantic memory will be used to build a
verbal explanation if the human notices the deviation taken by the robot and asks for
the cause of it. A final effect of completing this new mission will be the acquisition
of new images of a bump and their storage for later retraining of the recently created
classifier.

An initial analysis of this problem and the path to a solution outlined here under-
lines three steps of major difficulty. First, the process that goes from the candidate
rules obtained from the semantic memory to the initialization of the internal simula-
tor with the corresponding variations; second, the synthesis of a classifier on the fly
using only data from one real experience and the augmented samples that could be
derived from it with the simulator; and third, the use of the new concepts or relations
introduced from previously ungrounded knowledge, such as BUMP or FALLING, by
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the hard-coded controllers, so they end up making sense inside the architecture. This
is an instance of the open-world problem that could be partially overcome if all new
elements have known super types previously known to the controllers. These open
problems and many others that will arise are the subject of this research effort that
will last for the next few years.

6 Conclusions

In this paper, we have introduced the new INSIGHT research project, which aims
to examine the current challenges in robot learning and offer solutions grounded in
contemporary causal approaches. The inception of this project stemmed from the
imperative to enhance robots’ comprehension of their environment and enable them
to construct explanations based on their own experiences. This objective aligns with
two prominent themes in the field of artificial intelligence: causality and explainability.

To concretize the ambitious objectives of the project, it incorporates a use case
that represents a plausible scenario a robot might encounter, involving events that defy
explanation based on its pre-existing knowledge. This use case serves as a common
foundation for project members to develop and integrate novel proposals and advance-
ments. As a result of the INSIGHT research project, we anticipate yielding compelling
outcomes across various domains, including cognitive architectures and human-robot
interaction.
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